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Abstract

In this paper is applied the two-fluid model to simulate the gas-solid flow
in a riser of a circulating fluidized bed (CFB). The phases are modeled as a
continuum medium computing the solid’s pressure and dynamic viscosity
by the kinetic theory of granular flows (KTGF). The numerical simulations
are performed with the MFIX (Multiphase Flow with Interface eXchanges)
computational fluid dynamics (CFD) code developed in the National Energy
Technology Laboratory (NETL). The main aim of this work is to perform a
comparative analysis of the simulation results obtained from three different
versions of the KTGF. In the work are presented time-averaged results com-
prehending the radial profiles of the axial velocities of gas and solid phases,
the solid volumetric fraction and the solid mass flow. These results are com-
pared with the available experimental data showing a different behavior for
each version of the KTGF. For a more complete comparative analysis also
are presented time-averaged and transient snapshots of the gas volumetric
fraction in two risers sections disposed at two different heights of the col-
umn. In all the simulations is used a uniform two-dimensional computa-
tional mesh and the Superbee second order scheme for the discretization of
the advective terms. The numerical results show that the procedure for the
computation of the solid phase pressure and viscosity influences in a signif-
icant way the behavior of the gas-solid flow in a riser. These differences are

*Associate Professor, Department of Mathematics, Federal University of Mato Grosso do Sul.
Email id: renato.silva@ufms.br, ORCID: 0000-0002-7931-7785.

†Associate Professor, Mechanical Engineering Department, Sao Carlos School of Engineering,
University of Sao Paulo. Email id: lubencg@sc.usp.br, ORCID: 0000-0002-9550-9453.

‡Associate Professor, Mechanical Engineering Department, Sao Carlos School of Engineering,
University of Sao Paulo. (in memorian)

1



164 International Journal of Mathematics, Statistics and Operations Research

obtained even when it is considered only the KTGF with slightly variations
for the constitutive equations computations.

Keywords: Gas-solids flows, circulating fluidized beds, kinetic theory of
granular flows, numerical simulation, MFIX code.

1 Introduction
In this work are presented numerical simulation results for the gas-solid two-phase
flow in a CFB riser. The results were obtained using the MFIX code, Syam-
lal et al. (1993) and considering three different versions of the KTGF. In hy-
drodynamics simulations of gas-solid flows it is a common issue to consider the
participating phases as a continuum medium and to consider two different main
procedures for the calculation of the dispersed solid-phase constitutive equations
(mainly the solid pressure and first and second viscosity coefficients). These pro-
cedures are the so-called traditional procedure, which rely on the use of empirical
correlations obtained from experiments, c.f., Gidaspow (1994), Huilin and Gi-
daspow (2003), Cabezas-Gómez and Milioli (2003), Cabezas-Gómez and Milioli
(2005), Cabezas-Gómez et al (2008), and the KTGF, which uses theoretical rela-
tions for computation of the solid phase constitutive relations parameters (see the
works cited in the review below). The KTGF have been used considering mainly
two versions, the algebraic version Syamlal et al. (1993), Guenther and Syam-
lal (2001), Syamlal and O’Brien (2004) e Cabezas-Gómez et al. (2006) where
the granular temperature is computed solving algebraic equations, and other more
sophisticated version where the granular temperature is computed solving a par-
tial differential equation (PDE) representing the granular kinetic energy balance
Neri and Gidaspow (2000), Agrawal et al. (2001), Benyahia et al. (2000), among
others.

In the present work besides the above two KTGF models (namely the algebraic
version and that which solves the PDE for computation of granular temperature)
it is also used a modified version of the algebraic KTGF model for numerical sim-
ulations, here named as the hybrid model. The balance equations for these models
are introduced in section 2. Now a brief introduction of the models is presented.
The KTGF bases on the similarities between flow of a granular material, which
comprehends a particles population with or without an interstitial gas, and the
molecules of a gas. This treatment uses the classical results of kinetic theory for
dense gases introduced in Chapman and Cowling (1961 and 1970). According to
Gidaspow (1994), it is believed that in 1954 Bagnold (1954) was the pioneer in
the use of the KTGF.

Of the works concerning to the KTGF development can highlight the next:
Jenkins and Savage (1983), Savage (1983), Lun et al. (1984), and Jenkins and
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Richman (1985). These works served as starting point for the development and
industrial application of the KTGF to multiphase gas-solid flows, mainly in gas-
solid fluidization processes, such as those studied by Sinclair and Jackson (1989),
Ding and Gidaspow (1990), Kim and Arastoopour (1995), and Boemer et al.
(1995), among others. One of the more complete analyses developed with the
two-fluid model using the KTGF has been accomplished by the Electricité de
France (EDF) group (Peirano (1998)).

An algebraic version of the KTGF was developed by Syamlal et al. (1993),
bringing the possibility of convergence acceleration by directly computing the
granular temperature from a simple algebraic expression instead of solving a com-
plex partial differential equation (PDE) for the conservation of granular energy.
The most notable difference between the algebraic and other versions of KTGF is
the use of a simplified balance equation for the granular temperature calculation.
In this procedure both convection and diffusion processes are neglected, and only
local stationary dissipation of granular energy is taken into account. From the
computed granular temperature, and applying theoretical relations developed by
Lun et al. (1984), solids phase pressure and viscosities are determined. According
to van Wachem et al. (1998) following Syamlal et al. (1993), this procedure is
valid only for higher values of the solids volumetric fraction and relatively low
values of solids velocity. In such a regime the kinetic granular is mostly dissi-
pated locally. The approach is more appropriate for gas-solids flows in bubbling
fluidized beds (BFB). However, following the literature, the procedure is used in
the present work to simulate the gas-solid flow in a CFB riser.

The modified version of the algebraic KTGF (hybrid model) uses the model
developed by Syamlal et al. (1993) slightly changed. In this new model the solid
phase dynamic viscosity is computed by the algebraic version of KTGF, while the
solid pressure is calculated applying empirical correlations of the two-fluid model
traditional procedure. The correlations are function of an elasticity modulus ac-
counting for collisional interactions among particles, c.f. Gidaspow (1994). Thus,
the modified procedure can be considered a hybrid procedure mixing up elements
of both the traditional and algebraic KTGF procedures. The present results show
that this hybrid model provides qualitatively acceptable predictions, even better
than the algebraic version of the KTGF, at least, in relation to the experimental
data used for comparison. Some initial results with this model were published in
Cabezas-Gómez et al. (2006).

The main aim of this work is to perform a comparative analysis of the sim-
ulation results obtained with the different three procedures for the determination
of solid phase pressure and viscosity above commented, namely, the algebraic
KTGF, the hybrid approach and the KTGF solving the PDE for granular tempera-
ture computation. For this purpose these three models are denoted in the paper as
‘model 1’, ‘model 2’ and ‘model 3’, respectively. All the numerical simulations
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were performed for the CFB installation described in Luo (1987), considering the
Superbee scheme (Sweby, (1984)) for the discretization of the advective terms of
balance equations. Nowadays, works considering an Eulerian-Lagrangian model-
ing approaches are used for simulating the problems studied in this paper, i.e., see
Caserta et al. (2016).

2 Mathematical formulation
The mathematical models are based on the mathematical construction of inter-
penetrating continuous phases. For this purpose some kind of averaged technique
should be performed to average the local temporal variables over a region that
is large compared to the particles spacing but sufficient small than the flow do-
main. A temporal average also is constructed considering a small time interval for
constructing the time-averaged quantities, which remain instantaneous for high
temporal scales. Detailed descriptions used to obtain gas-solid multiphase math-
ematical models considering different averaged procedures are presented in An-
derson and Jackson (1967), Soo (1967), Drew (1983), Gidaspow (1994), Enwald
et al. (1996).

The equations solved by the MFIX code used in this work are those given in
Syamlal et al. (1993) and Benyahia et al. (2006). In the present study is used the
hydrodynamic model B, developed at IIT (Illinois Institute of Technology) (see
Gidaspow (1994)). The following hypotheses are considered: both phases are as-
sumed to be isothermal at 300K; no interface mass transfer is assumed; the solid
phase is characterized by a mean particle diameter, density and sphericity factor;
both phases are continuous assuming a single gas phase (air) and a single solid
phase (glass beads). Next is presented the system of governing equations used in
the three mathematical models used in numerical simulations. The models only
have differences in the solid phase stress tensor computation, the other equations
applied for each model. The continuity equations, representing the mass conser-
vation for gas and solid phases, respectively, are written as:

∂(ρgαg)

∂t
+∇.(ρgαgvg) = 0 (1)

∂(ρsαs)

∂t
+∇.(ρsαsvs) = 0 (2)

where vg and vs represent the velocities (m/s), ρg and ρs the densities (kg/m3)
and αg and αs stand for the volumetric fractions of gas and solid phases, respec-
tively. By definition the following relation applies for the volumetric fractions:

αg +αs = 1 (3)
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The momentum equation for the gas phase is expressed as:

∂(ρgαgvg)

∂t
+∇.(ρgαgvgvg) =−∇P+∇.(αgτg)−βB (vg − vs)+ρgg (4)

To model the constitutive equations for the gas phase it is assumed a Newto-
nian fluid and the Stokes hypothesis. The following relation holds for the viscous
stress tensor, τg:

τg = µg

[
∇vg +(∇vg)

T − 2
3
(∇.vg)

¯̄I
]

(5)

In the Eq. (4) g represents the gravity acceleration (m/s2), P represents the
thermodynamic gas pressure (Pa), and β stands for the stationary drag function at
interface between the gas and solid phase (kg/(m2.s)). The subscript B represents
the hydrodynamic model B. In this model the gas pressure gradient term it is not
present in the solid phase momentum equation and the drag function is modified
to satisfy the Archimedes’ principle and the usual relation for the minimum flu-
idization Gidaspow (1994). In Eq. (5) µg is the dynamic viscosity being assumed
constant and equal to 1.8x10−5 (kg⁄(m.s)) and ¯̄I is a unit tensor.

The drag function is used to compute the stationary drag force at the interface.
This force represents the momentum transfer between the gas and solid phases.
The drag function is computed considering the procedure of Gidaspow (1994)
and coworkers, where Ergun (1965) correlation is used for αs ≥ 0.2 and Wen and
Yu (1966) correlation is used for αs < 0.2, respectively.

The drag function for αs ≥ 0.2:

β = 150
α2

s µg

α2
g(dpΦs)2 +1.75

ρgαs
∣∣vg − vs

∣∣
(αgdpΦs)

(6)

and for αs < 0.2:

β =
3
4

CDs
ρgαs

∣∣vg − vs
∣∣

dpΦs
α−2.65

g (7)

In relation (7) CDs represents the interface drag coefficient for a single particle
in an infinite medium, calculated by:

CDs =

{ 24
Res

(
1+0.15.Re0.687

s
)

f or Res < 1000
0.44 f or Res ≥ 1000

(8)

The Reynolds number, Res is based on the particle mean diameter, dp (m) and
considers the particle sphericity, Φs equals to unity in the present study:

Res =
αgρg

∣∣vg − vs
∣∣dpΦs

µg
(9)

5



168 International Journal of Mathematics, Statistics and Operations Research

The momentum equation for the solid phase is expressed as:

∂(ρsαsvs)

∂t
+∇.(ρsαsvsvs) = ∇.Ss +βB (vg − vs)+(ρs −ρg)αsg (10)

In Eq. (10), Ss represents the stress tensor for the solid phase being defined by
combination of theories for viscous and plastic flow regimes according to Syamlal
et al. (1993) as:

Ss =

{
−Pp

s
¯̄I + τp

s , i f αg ≤ α∗
g

−Pv
s

¯̄I + τv
s, i f αg > α∗

g
(11)

where Ps stands for the solid pressure (Pa) and τs for the viscous solid stresses
(Pa), respectively. The superscripts p is used for the plastic regime and v for the
viscous regime. The variable α∗

g is equal to the void fraction at the minimum
fluidization. The variations in the present models concern only to the formulation
of the solid viscous stresses in the viscous regime. In the plastic regime all models
use the same formulation. The plastic stresses are calculated using the Schaeffer’s
(1987) formulation as:

τp
s = 2µp

s Ds (12)

where

µp
s =

P∗sin(Φ)

2
√

I2D
(13)

In relations (12) and (13) Ds represent the strain rate tensor of the solid phase,
I2D is the second invariant of the deviator of the strain rate tensor and Φ is an angle
of internal friction, assumed equal to zero (c.f. Syamlal et al. (1993)). The first
two parameters as computed as:

I2D =
1
6

[
(Ds11 −Ds22)

2 +(Ds22 −Ds33)
2 +(Ds33 −Ds11)

2
]
+D2

s12
+D2

s23
+D2

s31

(14)

Ds =
1
2

(
∇vs +(∇vs)

T
)

(15)

Similar to the functions typically used in plastic flow theories (Jenike (1987)),
an arbitrary function that allows a certain amount of compressibility in the solid
phase represent the solid pressure term in the plastic flow regime:

Pp
s = αsP∗ (16)

where P∗ is represented by an empirical law according to Jenike (1987):

P∗ = 1025 (α∗
g −αg

)
(17)
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The three considered models in the paper only differ in the formulation of the
stress tensor in the viscous regime. Nevertheless, for all the models the viscous
solid stress in the viscous regime is formulated as:

τv
s = 2µv

sDs +λv
str (Ds) ¯̄I (18)

The differences are related mainly to the computation of the first, µs, and sec-
ond, λs, viscosity coefficients of the solid phase (dynamic and volumetric viscosi-
ties, respectively). Also the formulation of the solid pressure, Ps, differs slightly.
The first model is the algebraic version of the KTGF. For this model the following
relations apply (Syamlal (1993)). The granular temperature, θ,

�
m2/s2 is com-

puted by an algebraic version of the balance equation for granular temperature
obtained by Lun et al. (1984). This algebraic equation is obtained assuming that
the granular temperature is dissipated locally, neglecting the diffusion and con-
vective terms and retaining only the dissipative and font terms (Syamlal (1993)):

Θ =


−K1αstr (Ds)+


K2

1 α2
s tr2 (Ds)+4K4αs (K2tr2 (Ds)+2K3tr (D2

s ))

2αsK4




(19)
To compute the granular temperature from the above relation the following

constant functions are used:

K1 = 2(1+ e)ρsg0 (20)

K2 =
4

3
√

π
dpρs (1+ e)αsg0 −

2
3

K3 (21)

K3 =
dpρs

√
π

6(3− e)


1+

2
5
(1+ e)(3e−1)αsg0


+

8dpρsαsg0 (1+ e)
10
√

π
(22)

K4 =
12

�
1− e2ρsg0

dp
√

π
(23)

In the above relations, Eq. (20-23), g0 stands for the radial distribution func-
tion at contact of particles calculated by the correlation of Carnahan and Starling
(1969):

g0 =
1

αg
+

1.5αs

α2
g

+
0.5α2

s
α3

g
(24)

After the computation of all the necessary parameters the dynamic and vol-
umetric solid viscosities are computed respectively by the Eqs. (25) and (26)
below:

µv
s = K3αs

√
Θ (25)
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λv
s = K2αs

√
Θ (26)

For the algebraic version of KTGF, the denominated “model 1” in the present
work, the solid phase granular pressure is expressed as (Syamlal (1993)):

Pv
s = K1α2

s Θ (27)

This model only considers the particle collisions’ contribution to the granular
solids pressure property. This term accounts for the momentum transfer by di-
rect collisions. The formulation of ”model 2”, described here as a hybrid model,
considers the same equations of the algebraic version of the KTGF, presented
above, excepting the formulation of the granular solid pressure term. This term
is formulated considering the traditional two-fluid modeling approach where the
solid phase pressure is modeled empirically using the solid elastic modulus, G, in(
N/m2) as:

Pv
s = G∇αs (28)

The solid elasticity modulus is a function of the void fraction computed by the
correlation of Gidaspow and Ettehadieh (1983):

G(αg) = 10−8.76αg+5.43 (Pa/m2) (29)

This approach considers only the solid pressure gradient due to particle col-
lisions. In the traditional procedure the kinetic influence is commonly neglected
(Enwald et al. (1996)).

The third model, ”model 3”, is the KTGF that solves a partial differential
equation for computing the granular temperature. In this case is used the Princeton
model Agrawal et al (2001), described in details in Benyahia et al. (2006) and
fully implemented in the MFIX code.

The pseudo-thermal energy PTE balance for computing the granular tempera-
ture is expressed as:
[

∂
(3

2αsρsΘ
)

∂t
+∇.

(
3
2

αsρsvsΘ
)]

=−∇.q−Ss : ∇vs +Γslip −Jcoll −Jvis (30)

The first term of the right hand side of this equation represent the diffusive
transport of PTE, with q representing the diffusive flux of kinetic granular energy.
The second and third terms represent rates of production of kinetic granular energy
by shear (viscous regime) and gas-particle slip, respectively. The fourth and fifth
terms denote rates of dissipation of PTE through inelastic collisions and viscous
damping, respectively (Agrawal et al. (2001)).
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The rates of production of PTE by gas-slip, and of dissipation of PTE through
inelastic collisions and viscous damping are respectively expressed as:

Γslip =
81αsµ2

g
∣∣vg − vs

∣∣
g0d3

pρs
√

πΘ
(31)

Jcoll =
48√

π
η(1−η)

ρsα2
s

dp
g0Θ3/2 (32)

Jvis = 3βΘ (33)

The solid phase stresses in the viscous regime are formulated as:

Ss = Pv
s

¯̄I − τv
s = Pv

s
¯̄I −λv

s (∇.vs) ¯̄I +2µv
s

[
Ds −

1
3
(∇.vs) ¯̄I

]
(34)

In relation (34) the solid pressure and the volumetric and dynamic viscosities
are expressed as:

Pv
s = αsρs (1+4ηαsg0)Θ (35)

λv
s = ηµb (36)

µv
s =−

(
2+α

3

){
2µ∗

g0η(2−η)

(
1+

5
8

αsg0

)(
1+

5
8

η(3η−2)αsg0

)
+

6
5

ηµb

}

(37)
where

µb =
256µα2

s g0

5π
(38)

µ =
5ρsdp

√
πΘ

96
(39)

µ∗ =
µ

1+ 2βµ
(ρsαs)

2g0Θ

(40)

η =
(1+ e)

2
(41)

α = 1.6 (42)

e represents the particle-particle collision restitution coefficient. In the present
work e is equal to 0.8.

The diffusive flux of PTE is formulated as:

q =−kv
s∇Θ (43)

9



172 International Journal of Mathematics, Statistics and Operations Research

In Eq. (43) the conductivity of the granular solid phase is expressed as:

kv
s =−λ∗

g0

{(
1+

12
5

η2 (4η−3)αsg0

)
+

64
25π

(41−33η)η2α2
s g2

0

}
(44)

where

λ∗ =
λ

1+ 6βλ
5(ρsαs)

2g0Θ

(45)

and

λ =
75ρsdp

√
πΘ

48η(41−33η)
(46)

It should be noted that the solid-phase stress in the viscous regime, as well as,
the PTE diffusive flux are expressed in a manner very similar to that proposed in
Lun et al. (1984), see Eqs. (34) – (46). To account for the role of the interstitial
fluid Agrawal et al. (2001) included in these expressions the terms µ∗ and λ∗. This
work should be consulted for more details on Princeton model.

Finally, the fluidization medium, air, is modeled as an ideal fluid by the ideal
gas state equation:

ρg =
P

(RgT )
(47)

In Eq. (47), Rg is the ideal gas constant (kJ/kg-K). In all equations the sub-
scripts (g) and (s) respectively stand for gas and solid phases and t is the time
(s).

3 Geometry and simulation conditions
In the simulations was employed a two-dimensional computational domain apply-
ing a Cartesian coordinate system. The geometric dimensions are those specified
in Cabezas-Gómez and Milioli (2003) and Cabezas-Gómez and Milioli (2005).
The riser height is equal to 5.5762 meters and a diameter equal to 0.0762 meters.
The inlet section is located at 0 meter height and has a dimension equal to the riser
diameter. The exit section is located at the right wall after 5.5 meters height.

For simulation the following data were assumed: mean solid particle diameter,
dp = 520 µm; solid phase density, ρs = 2,620 kg/m3; mean solid mass flux, Gs =
24.9 kg/(m2 - s); and molecular gas phase viscosity equal to, µg = 1.8x10−5 Pa.s.

For first temporal integration the assumed riser initial conditions are: riser
without solids, αs = 0; gas pressure equal to P = 101.325 kPa and gas temperature
T = 300 K. It should be noted that the gas-solid flow is isothermal.

10
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The formulation of boundary conditions is of great importance for the quality
of the numerical results. In the present problem are formulated boundary condi-
tions at the inlet and outlet riser’s sections, as well as, at the riser walls. At the
riser inlet is assumed a constant solid mass flow, defining the gas and solid phase
normal velocities and the solid volumetric fraction as: vs = 0.386 m/s, vg = 4.979
m/s and αs = 0.0246. The MFIX need the inlet setting of gas pressure and temper-
ature taken equal to P = 120.6639 kPa and T = 300 K. To close the necessary BCs
at the inlet region is assigned a constant inlet value for the granular temperature.
In this case this parameter was assumed to be equal to θ = 0.1 m2/s2.

At the riser outlet it is assumed a developed flow applying the following con-
dition in the normal direction to the outlet region:

∂ f
∂n

= 0 (48)

where f is αg, ug and us. The gas pressure is fixed to P = 117.2049 kPa. The
above relations apply for all the mathematical models.

The differences are found in the formulation of BCs at riser’s walls. At the
walls it is considered for the gas phase a no slip boundary condition for the three
models. For the solid phase it is assumed a partial slip boundary condition (Ding
and Gidaspow (1990)) in the tangential direction to the wall according to Eq. (49)
for the models 1 and 2, respectively. This equation was implemented in the MFIX
code by the authors.

vs,w =−
dp

α1/3
s

∂vs

∂n
(49)

For model 3 a partial slip boundary condition for tangential solid velocity
and granular temperature according to Johnson and Jackson (1987) are applied.
These equations are implemented in the default version of the MFIX code and are
represented by the Eqs. (50) and (51).

n.Ss.t+
π

2
√

3αsmax
Φ′ρsαsg0Θ

1
2 vslip = 0 (50)

n.q =
π
√

3
6αsmax

Φ′ρsαsg0Θ
1
2 |vsl|−

π
√

3
4αsmax

(
1− e2

w
)

ρsαsg0Θ
3
2 (51)

where the slip velocity at the wall is computed by:

vsl = v− vw (52)

In Eqs. (50) and (51), ew represents the particle-wall restitution coefficient, φ′
stands for specularity coefficient and n represent a unitary normal vector. The first
two variables assume the following MFIX default values: ew = 1.0 and φ′ = 0.6,

11
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respectively. A additional discussion about boundary condition effects on CFB
disperse gas-solid flow in presented in Benyahia et al. (2005).

In the normal direction to the wall it is considered a no slip condition for both
phases. For pressure and solid volumetric fraction a free slip boundary condition
was applied, assuming a null gradient normal to the wall of each variable.

In this work is used a Cartesian coordinate system considering uniform com-
putational mesh in radial direction with 22 cells (δx = 0.381 cm) and uniform in
axial direction with 148 cells (δy = 3.81 cm) totalizing a number of 2920 cells
in the whole domain. An appropriateness of using this computational mesh for
gas-solid flows simulation is discussed in Cabezas-Gómez et al (2008). The sim-
ulations with all models are performed for t = 100 seconds of fluidization.

4 Numerical results and discussion
The numerical simulations were developed using the MFIX code (Syamlal et al
(1993)). This numerical code is widely used for the simulation of multiphase gas-
solid flows (Guenther and Syamlal (2001), Syamlal and O’Brien (2003), Cabezas-
Gómez et al. (2006), Benyahia et al. (2005), Benyahia et al. (2006), beside oth-
ers). The above three mathematical models are all available in the MIFX code.
The authors implemented the solid pressure correlation from the traditional pro-
cedure (see Eqs. 28 and 29) used in model 2, along with the partial slip solid
phase BC at the walls (Eq. 49).

Next are presented the simulation results obtained with the three mathematical
models. The model 1 stands for the algebraic version of the KTGF, the model 2
represents the results obtained with the hybrid approach, and the results obtained
with the KTGF, solving a PDE for granular temperature computation are denoted
by the model 3. The hybrid model can be considered as an “ad-hoc” model propo-
sition, leading to interesting results.

In Figures 1 – 4 are shown the numerical results analyzed in the paper for
which are disposable experimental data. In all these figures are displayed mean
time profiles obtained for a temporal interval of 80 seconds, taken from 20 up to
100 seconds of simulation.

In Figure 1 are observed the radial profiles of the mean time solid volumetric
fraction at 3.4 meters above the riser inlet for the three employed models. It
is clearly observed that the model 1 overestimates the solid volumetric fraction,
showing significant errors in relation to the experimental data in all riser cross-
section extension, except for the point closest to the right wall. This model also
presents two maximum points of the mean time solid fraction near each riser wall.
This behavior contradicts the experimental data and the results obtained with the
models 2 (hybrid) and 3 (KTGF solving a PDE), respectively; and seems to be

12
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physically incoherent.

Figure 1: Radial profiles of the mean time solid volumetric fraction, 3.4 meters
from the riser inlet for the models 1, 2 and 3.

It is estimated that this behavior is caused by the use of granular tempera-
ture values computed through a simplified methodology, which seems to affect
considerable the computed solid pressure and viscosity quantities. In Cabezas-
Gómez and Milioli (2005) is showed that the solid pressure gradient computation
have a considerable influence in the numerical solution of balance equations for
a gas-solid flow in a riser. The authors tested various empirical correlations for
the computation of the solid pressure gradient in the context of the traditional
model. Even so, if the use of empirical correlations for the constitutive relations
computation is limited to their validity, it can be observed that when they are
used correctly, i.e., inside their valid range, the simulation results demonstrate an
adequate and qualitatively physical correct behavior. The works of Tsuo and Gi-
daspow (1990), Sun and Gidaspow (1999), Cabezas-Gómez and Milioli (2003)
and Cabezas-Gómez et al (2008) show the validity of this affirmation. Never-
theless, only three-dimensional simulations can elucidate better up to what extend
the model 1 can be used for simulating gas-solid flows in circulating fluidized bed.
More research and simulations are needed in this direction. The results obtained
with the models 2 and 3 displayed in Fig. 1 also show the validity of the previous
discussion.
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In fact, the model 2 results are those that present the better behavior in relation
to the considered experimental data in the central region of the riser; and the
model 3 results are those that present the better behavior in the regions near the
riser walls. Even so if in the model 2 is used the same approach considered in the
model 1 to compute the granular temperature, the solid pressure is calculated as in
the traditional model by the correlation of Gidaspow and Ettehadieh (1983) (see
Eqs. 28 and 29). This fact shows that the computation of the solid pressure is very
important to obtain good enough simulation results. In this case it is seem that the
use of an empirical correlation is better to compute the solid pressure instead the
use of the algebraic version of the KTGF. However, when comparing with model
3 results’ the same cannot be affirmed. This more complete KTGF model (model
3) leads to profiles comparable to model 2 at the riser centerline and much more
appropriate in the regions near the riser walls regarding the experimental data. In
this case the solid pressure computation includes the consideration of both kinetic
and collisional terms, contrary to the models 1 and 2, where it is considered only
collisional mechanism. Considering the results from Fig. 1 it is observed that in
the central riser region all models overestimate the solid volumetric fraction in
relation to the expected profiles from the experimental data.

The radial profiles of the mean time axial velocity for gas and solid phases 3.4
meters above the riser inlet are shown in Figs. 2 and 3, respectively.

In both figures the model 1 presents velocity profiles with high distortions
characterizing an ascending solid flow at the right wall and a descending flow of
solids at the left wall of the riser in terms of mean time variables.

This kind of flow it is not typical of CFB installations, indicating that the use
of the model 1 may be not adequate to simulate the fluid dynamics of a CFB
riser flow. Even if three-dimensional simulation should be performed to clearly
demonstrate this affirmation, the present results are a strong indication about the
model 1 weakness for simulating this type of flow.

In the case of the models 2 and 3, respectively, it is observed in Fig. 2 that
model 2 leads to better results in the central riser region, while the model 3 leads
to better results at the riser wall regions. The model 2 near the walls even presents
negative velocity values. Considering the solid volumetric radial profiles dis-
played in Fig. 1, it is noted that the radial solid velocity profile is physically
coherent. As the model 2 lead to a more dilute solid phase at the riser center line
than the model 3, the particles in this case have a higher velocity. At the walls
this behavior inverts, leading the model 2 in this region, too much more solid
concentration having thus negative solid phase velocity values.

Analyzing the radial profiles of the gas velocity in Fig. 3 provided by these two
models it is observed that in this case the model 3 leads to very good simulation
results, presenting very small errors with the experimental data, in relation to the
predictions of the models 1 and 2, respectively.
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Figure 2: Radial profiles of the mean time axial solid velocity, 3.4 meters above
the riser inlet considering models 1, 2 and 3, respectively.

The model 2 causes a similar behavior of that presented in Fig. 2, producing
negative axial gas velocity values at the walls. These gas velocities values at the
walls are caused by the high solid concentration computed by the model 2 in these
regions, near riser walls. In this case the gas phase is forced to flow down near the
walls by the solid phase action trough the drag force at the gas-solid interface, as
a consequence of the solid phase concentration overestimation by the model.

From results showed in Fig. 3 it is clear that a more advance KTGF model
should be used for simulation of riser’s gas-solid flows. Future simulations should
be performed considering more refined meshes at the walls, as well as, considering
different boundary conditions to elucidate better how different physical models
behave.

The mean time solid mass flux rate radial profiles at 5.3 meters above the riser
inlet are shown in Fig. 4.

In this figure is noted that all three models present a similar behavior, showing
solid mass flux negative values at the riser walls with higher in module values at
the left wall. Though this behavior is not exhibited by the experimental data of
Luo (1987), it is estimated that the solid mass flow at the riser exit should be higher
in module at the walls where the mean time solid volumetric fraction is higher.
Observing yet that the riser exit is situated at the right wall, it is expected that
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Figure 3: Radial profiles of the mean time axial gas velocity 3.4 meters above the
riser inlet considering models 1, 2 and 3, respectively.

the solid phase will accumulate in the other riser side where the particles collide
with the upper and lateral walls without finding an exit region. As the particles
have a higher inertia than the gas phase it will be difficult to change completely
their trajectory to the right wall, even if the gas phase accelerates to this direction,
taking place the solid accumulations in the right riser region as showed in Fig. 4.

The experimental measurement of the solid mass flow rate is a complicated
task, involving the direct measurement of the local solid volumetric fraction and
the indirect measurement of the number of particles per unit of time. Even if the
applied boundary conditions at the riser exit are assuming a developed flow, it is
seem that the present results are physically correct. Observing in details the model
3 produces the better results in relation to the showed experimental profiles.

In Figures 5 and 6 are presented time-averaged snapshots of the gas volumetric
fraction in two risers sections disposed above three and five meters height, respec-
tively. These profiles are obtaining integrating in each computational cell the gas
volumetric fraction in time (from 20 to 100 seconds).

In both figures it is observed that the models lead to different time-averaged
solid concentrations, being the model 1, such that estimates the higher solid con-
centrations in the entire riser axial cross-section displayed in Figs. 5 and 6. These
results confirm the radial solid concentration profiles displayed in Fig. 1. From
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Figure 4: Radial profiles of the mean time solid mass flow rate 5.3 meters above
the riser inlet considering models 1, 2 and 3, respectively.

these two figures the higher differences in the models time-averaged results are
observed at section disposed near the riser exit, between 5.1 and 5.5 meters height
approximately.

In this case it is observed that the model 3 leads to higher solid concentration at
the upper part of the left wall, signalizing a solid concentration in this region. The
models 1 and 2 prescribe some solid concentration in this region, but not so high,
as that they prescribed at the lower region of this riser section. The model 1 leads
to practically annular flow pattern structure, even if the analyzed riser section is
near the riser outlet. This flow pattern is observed for all models in Fig. 5. This
behavior is expected.

Transient snapshots of the gas volumetric fraction at the same two riser axial
cross-sections are presented in Figs. 7 (above three meters height) and 8 (above
five meters height) at 100 seconds of fluidization time.

These profiles are much more different than the time-averaged values, showing
greatest differences across the models. The model 1 leads to high solid concen-
tration in both figures, showing several clusters and solid accumulation in central
and near walls regions. The model 2 predicts an annular flow pattern in Fig. 7
and two solid strands along the riser height and near the riser walls in Fig. 8. The
model 3 predicts two visible clusters one at the right wall in Fig 7 and other less
dense at the left wall in Fig. 8. This model, also produces more disperse vertical
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Figure 5: Time averaged snapshots of gas volumetric fraction in a riser section at
three meters height approximately. a) Model 1, b) Model 2, c) Model 3.

Figure 6: Time averaged snapshots of gas volumetric fraction in a riser section at
five meters height approximately. a) Model 1, b) Model 2, c) Model 3.

strands in the riser central region in both figures.
These differences point to the fact that the formulation of solid constitutive

equations considerable influences the gas-solid flow transient behavior, leading
to quantitatively different results. Transient hydrodynamics phenomena influence
in a great extent heat and chemical transport processes and consequently overall
reactors parameters as performance and yield. Thus, it is important to study how
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the models behave with time and what are their predictions.

Figure 7: Temporal snapshots of gas volumetric fraction in a riser section at three
meters height approximately, computed at 100 seconds of fluidization. a) - Model
1, b) - Model 2, c) - Model 3.

Figure 8: Temporal snapshots of gas volumetric fraction in a riser section at five
meters height approximately computed at 100 seconds of fluidization. (a-) Model
1, b-) Model 2, c-) Model 3)
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5 Conclusions
Considering the present numerical results can be concluded that the algebraic ver-
sion of the KTGF model is not very appropriate to simulate the gas-solid flow in
a CFB riser, possibly leading to non representative results of the riser hydrody-
namics. One solution to this problem is the use of KTGF which solves the full
partial differential equation for the granular temperature computation considering
all the physical phenomena influencing the balance of the particle fluctuation ve-
locity kinetic energy (model 3), as can be seen from the numerical results showed
in section 4. With base on the present analysis it is recommended the use of the
traditional algebraic KTGF for the simulation of the gas-solid flows in other in-
stallations, where the solid volumetric fraction is higher and the solid velocity is
relatively small, i.e., where the granular energy is locally dissipated. The develop-
ment of more complex CFB riser simulations should help to definitively establish
the present conclusion, considering the numerical study of gas-solid flows in other
CFB installations.

Other solution to the above problem is the use of the “ad-hoc” hybrid model
proposed in the present paper. This KTGF variant has an advantage of a low com-
putational cost of the traditional algebraic KTGF and allows obtaining satisfactory
results of simulation. A positive aspect of the proposed hybrid model associated
to its low computational cost is that it allows testing the many theoretical and even
empirical relations existing in the literature to compute the constitutive relations
for the solid phase. As expected, new investigations of the proposed model are
necessary, mainly those associated with model tests through the simulations of a
gas-solid flow in other CFB installations from bibliography to verify the efficiency
and possibilities of this proposed model.

The complete KTGF model (model 3) was that which presented the better nu-
merical results regarding the experimental data and it is highly recommended for
simulating gas-solid riser flows. It is possible to include more physical mech-
anisms in the MFIX software (see Benyahia et al. (2005) and Benyahia et al.
(2006))). The present model 3 considers a KTGF including the interstitial fluid
effects and was extensively studied in Agrawal et al. (2001). This model is very
useful for simulating gas-solid flows in CFB systems. Recent works derived from
Agrawal et al. (2001), that consider the turbulent scales and a much refined scales
are used extensively for CFB simulations (Sarkar et al., 2016).
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Cabezas-Gómez, L., Silva, R.C., Navarro, H.A., and Milioli, F.E., (2008),
Cluster identification and characterization in the riser of a circulating fluidized bed
from numerical simulation results, Applied Mathematical Modeling, 32(3):327-
340.

Carnahan, N.F., and Starling, K.E., (1969), Equations of state for non-attracting
rigid spheres, Journal of Chemical Physics, 51:635-636.

Caserta, A.J., Navarro, H.A., Cabezas-Gómez, L., (2016), Damping coeffi-
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